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ABSTRACT

Diffraction theory is used to formulate the H-plane radiation pattern of a
horn antenna. Excellent agreeaent between computed and measured patterns is
achieved by considering contributions from both the principal H-plane and E-
edge diffractions.

The pattern is computed by superposition of various diffracted rays which
are described by wedge diffraction as given in Appendix A. This technique is
demonstrated to be accurate and practical without employing aperture integra-
tion techniques.
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THE H-PLANE RADIATION PATTERN OF HORN ANTENNAS

I. INTRODUCTION

The overall radiation pattern in the E-plane of a horn antenna
has been successfully calculated[ 1] by using diffraction theory (in Ap-
pendix A) developed by Sommerfeld and Pauli. The techniques employ-
ed are successive evaluation of diffracted fields at various wedges and
algebraic superposition of the various fields to form the total pattern.
In this report the same techniques are employed to predict the radiation
patterns in the H-plane of a horn antenna.

The excitation in the H-plane of the antennas must be treated
differently from that in the E-plane; fcr the H-plane the primary source
of radiation is the two plane waves (shown in Fig. 1) illuminating wedges
A and B. The diffracted waves at A and B can be solved by Pauli's
solutions. But interactions between the diffracted waves cannot be
described accurately without including the higher-order terms of Eq.
(A-3) given by Pauli in Append-, A. This limitation occurs for wide-
angle wedges at A and B in which the distance between A and B is less
than one wavelength. Instead of considering the higher-order terms in
Pauli's solution, a new diffraction coefficient is developed at the end of

Appendix A for this purpose.

In 1962, Kinber[Z] used mode theory to solve the propagation modes
inside the antenna horn and the solutions were used for illumination inten-
sities in both E- and H-planes. Ti our present problem the solutions of
mode theory are avoided by simply evaluating the diffracted waves at A
and B. This makes possible a inique description of the problem by dif-
fraction theory. In 1963, diffraction theory had been used by Peters and
Rudduck[3] to study radiation mechanisms in the H-plane of a horn
antenna. Experimentally they showed how the diffracted fields from E--
edges (i. e., edges of the tw• horn walls which are perpendicular to the E-
fields) can be eliminated fr'_m the principal H-plane pattern by applying
RAM(Radar Absorber Materials) to the horn edges. Analytically, Ohba[4]

used diffraction theory in zhe same year to compute the H-plane pattern of
a corner reflector excited by a dipole source. No completely computed

pattern is given, but excellent agreement is confirmed with measured

patterns. It was pointkd out that disagreement in 'he back-lobe region

results from neglecting the diffracted fields from E-edges, In view of the
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Fig. 1. Two ccmponent-plane-waves in the H-plane of

a waveguide supporting TE1 0 mode.

significant contribution from the E-edge diffracted fields, we shall in-
clude this in the final H-plane patterns. To show the accuracy of pre-

dictions by diffraction theory, the problem will be formulated to com-

pute a complete pattern which can be easily compared with experimental

results.

11. RADIATION MECHANISMS

Propagation of electromagnetic waves inside a rectangular wave-
guide supporting the TE10 mode can be illustrated[ 5] by a simple physical

picture of plane waves. The H-plane (i. e., the principal pl.ýne to which
the H-field is parallel) of a horn antenna fed by the waveguida is shown in

Fig. 1. The dotted lines represent three equiphase planes of the two
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comprnent-plane-waves. The arrowed solid lines represent the ray
paths of the propagating TEzq mode. The purpose here is to investigate
the radiation characteristics of the horn antenna excited by the guide at
the throat AB.

The problem is a two-dlm ensional one in the principal H-plane
of the antenna. The geometry bhown in Fig. i is symmetrical with
respect to 9= 0, and this property of symmetry is used to simplify
the following discussions. By &he diffraction theory reviewed in
Appendix A, two wedges, A and B, at the joint between the guide and
the horn are said[ 6] to be illuminated by the incident plane waves.
Cylindrical waves are diffracted from A and B; the diffracted rays from
A are shown in Fig. 2. Each of the diffracted waves from A and B
illuminates the opposite wedge and causes higher-order diffractions.
This process of interaction between A and B continues indefinitely with
successively decreasing illumination intensities, which are denoted
coupling coefficients. The coupling coefficient between A and B can be
formulated in closed form to obtain the resultant waves diffracted from
A and B.

F

0

\ • \ (2- ntAh

NA

Fig. 2. Wedge A illuminated by one of the component-
plane-waves in the guide.
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Consider wedge A in Fig. 3; the diffracted rays in the region /
are reflected back into the guide while those in the region g pro-
pagate forward to the horn. The former portion is responsible for

22

AF :BG - pt 2*

AQ- -iQ -p9

LGQF* 26 O
AB x a*
FG- b -3I+2PH SinOH

Fig. 3. The diffracted waves from wedge A and the two
image-waves from Images I and 2.

mismatch be ,ween the guide and the horn. The latter portion may further
be divided in, several regions. In the region kAG, four successive
wavefronts are shown in solid curves to represent the portion of the wave
which propagates directly to the far-field zone. The other portion (shown
in dotted curves) is reflected by the wall BG. The reflected portion can
be represented by the image formed by A. The image is shown at point
1; also only the portion shov-.i in solid curves propagates to the far-field.
The portion of the image-wave shown by dotted curves from point I is
reflected by the wall AF, and a second image is formed at point Z. The
last portion of the diffracted wave from A is now totally radiated to the
far-field zone by the horn antenna. By the property of symmetry, two
other symmetrical inages can be constructed for the diffracted waves
from wedge B. Consequently, four imagea formed by A and B can be
constructed and all together six segments of cylindrical waves are
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radiated from the interior of the antenna. Figure 4 shows the three
segments from the lower half of the antenna. The discontinuities of
the segmented cylindrical waves are all conpensated by introducing

higher-order diffractions.

19H

F ,,c -- 19 +

jzI

BF :po BA ao 0 of -,#oo

FI -pi Al z ao

F2 zp 2  A2t •o2

LABF BLAG 1 j! H -9 - 0oo

L FIG z 2 *.- + *o1

Fig. 4. Geometry of the lower-wall image-waves.

As the diffracted waves from A and B and their image-waves pro-

pagate outward, the wedges F and G are illuminated by these waves.
As a consequence. more diffracted waves are induced at F and G which
contribute to the total radiation pattern. In Fig. 3, F and G are shown
illuminated by a ray from image I and A, respectively. If all possible
illuminations are properly taken into account, the resultant diffraction
at F and G can be formulated. The diffracted waves at F and G also
illuminate each other and a closed-form interaction can be obtained. The

"images formed in the horn walls by F and G are formulated in Append'Ix

B.
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The mechanisms of radiation of the horn antenna have been ex-
pressed in terms of diffraction theory. The total radiation pattern
is the superposition of the four diffracted waves from wedges A, B,
i?, and G and all the image-waves formed in the horn walls. It has

been shown[31 that the diffracted fields frzm E-plane edges of the horn
also contribute to the principal H-plane pattern. This contribution is
also formulated in the following section.

IlI. FORMULATION OF SOLUTION

The two plane waves illuminating A and B in Fig., I are in phase
and equal in magnitude. The distance between A and B is denoted ao
and the incident angle can be obtained from Fig. 2 as

-I )

() g= cos

sin k

The direction of field-point referred to wedge A is

(2) 1A = 1 + 0.

The wedge angle n - 01 shown in Fig. 2 is set equal to (Z-nA)n, resulting
in the value of nA given by

(3) n 1+ -
Ai

If the illuminating plane waves are assumed to have unit intensity, the
solutions of diffracted waves from wedge A can be obtained from Eq.
(A-4) as

(4) DAg(O) = K -lrt A AJ

LKAZ - Cos (7+*g+ef ]
nA e)
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KA1 =nA-1 sin (AJ ,

and

KAZ = 7o (

where the cylindrical wave factor

(22 nkR) Exp. +~ (jkI)]

to the far-field point is suppressed because only angular dependence is
of interest. The angles used for the incident and reflected terms are

obtained by

i = *A - 9g =+ 0- 40 g

and

.4, r = ýA + ÷ g 7r+ 0+ * 9

where the superscripts i and r replace the signs (T) in Appendix A to
indicate that the ;'s are fox- the incident and reflected terms. By the

property of symmetry, the diffracted waves from wedge B can be obtained
by replacing 3 in Eq. (4) by (-,J) as

-1

(5) DBg(O) = DAg(-i)z KA A -[tnAZ

- JA - cOs + , 8.
nA

nB = nA

KBI= KAM, andKBZ =KA2.



Only portions of the two diffracted waves obtained in Eqs. (4) and (5)
propagate directly to the far field. These portions are schematically
shown as solid-curved wavefronts in Figs. 3 and 4; the portions of the
waves reflected by horn walls are shown in dotted curves. Before dis-
cussing reflections of the waves, it is first convenient to treat inter-
actions between A and B. At the boundary 4 A = ir/2 or 0 = -Tr/2, the
diffracted wave from A illuminates B with an intensity DAg(0 = -w/2).
Similarly, A is illunitrated by B by DBg(0=+w/Z). Using Eqs. (4) and
(5), the coupling coefficient between A and B is obtained as

(6) G1tAB "DAg -IT = )B Dg( )
2 )

= KAI A- on- - g)

"M tA2 - cos -

Assuming that the diffractions from A and B are the same as those
obtained by illuminatibng each other with uniform waves of intensity
CIAB, the diffracted waves consequently induced at A and B may be
obtained from Eqs. (A-3) as

(7) D'AB (0) - C09B ,B2ao - nA) vB ao, + 0, n

D'BA(6) D=AB:

and

1i, r2
•AB ="'A• :

2 0

In Eq. (7) the incident angle from B to A is equal to w/2, and again the
property of symmetry is used. The solutions in Eqs. (7) are 2nd order
diffractions which produce 3rd-order diffractions at A and B. The 2nd-

order coupling coefficient can be obtained as



(8) D'AB D.,~~i

-C'AB[VB(ao, 0,'nA)- VB (aO,# ,nA)I

C'BA CABA,

where the triple-subscript is used to indicate that wedge A is illuminated
by B at which the diffracted waves are induced by C'BA from A. If the
process of interactions between A and B is indefinitely continued, the
resultant coupling coefficient can be obtained in closed form as

(9) CAB = CBA- ICAB

ABA

which is evaluated by using Eqs. (6) and (b). As a result, the total
diffracted waves resulting from the interactions have the same form of
solutions as in Eq. (7), with CAB replaced by CAB .

Combination of the diffeacted waves in Eqs. (4) and (5) and that
caused by the interactions between A and B can finally be written as

(10) DA(O) = DAg + DAB

= KAI [KA2 -Cos A

KA Kcos co ..
nAn

-{AZ - Cos nA }
+ C AB [vB(ao. +0 nA' vB 1ao + 37 n A)1

-(0H 4oo) <- 0 H

and

DB(5') = DA(-"), GH +4 O 0> -'JH

9



where the regions are specified so that the portions of waves reflected

by horn walls are excluded. The values of DA and D are set to zero

outside the specified regions. The incidence angle 0oo can be deter-
mined from Fig. 4 as

Ico

00 =o sin- - *
Po

co = ao cos EHP

and
I

p = (ao- + PH+ 2aoPH sin VH)

The two resultant diffracted waves from A and B have been sum-
marized in Eqs. (10) in which the regions are specified for only those
rays which propagate directly to the far field. Since the solutions are
symmetrical with respect to 0 = 0, the portions of the waves in the
regions (-ir/Z < 8< - (Oj + 'Ioo) for A and w/ 2 > 0> (GH + 0oo) for B)
reflected by the horn walls can be described similar to the methods in
Appendix B. Using the property of symmetry and referring to Fig. 4,
the images formed in the lower wall BG can be described in general,
as in Eq. (B-8), by replacing 0 in DA in Eqs. (10) by -(ZieiH + 0):

(12) ILij() = (-1)i [DA(O= -Zi 8 H - 6)]

i = 1,2,3,------

where the factors (-I)i are used for each image because the electric
field polarization is perpendicular to the plane of study. The number of
images formed is determined by the horn geometry. In Figs. 3 and 4,
the cylindrical wavefronts are drawn in order to emphasize the dividing
regions for the images. For a horn with small 6jj and long PH, the total
extent of the region for each image may generally be expressed as

(13) (XW) O-)=Z° - o(i- 1) + oi= ,3

where

10



Pi(14) •t=snlc

Pi • i = 0, 1,Z ---
ci ai cos(i+l)0HJ

ai = ai.1 cos uH+ ao cos iH, il,Z,3,

and
Pi =[aA + pl?+ Zai PHi sin(i+l)0H]I 2 . i = 0, 1, ,--

The notations are indicated in Fig. 4 in which ýoi are the incident angles

of edge F from ,,arious images. Since the waves from 4 and B are re-

flected by the h-rn walls only in the region, /ABF = /BAG i/2 -

"tioo as shown in Fig. 4, the sum of image regions should not exceed

thisovalue. This criterion is used here to determine the number of

images; i.e.,

[2H - %0 + 'oi] + [2•H - Iol + ÷or] +-'- [2cH - ÷o(i-l) + 'oil

<-" ýH - 41
~2r1 00

or

(2'+')tj•H + •boi <- '2

In other words, the number of images is equal to the integer h which

satisfies the condition

(15) (Zh+l)-I + oh <_-

where the values of the 4 oi are computed by Eqs. (14). When a set of 4h,

aot and PH is given, the number of images" formed in each horn wall by A

and B can be determined by Eq. (15). From this information, the image-

waves from the horn walls can be written from Eqs. (10) and (1Z) as

(16) IL1 8 ) = ( [)' KAI t(AZ - cos nA

-(K - OS + 4g-ZiOH &)}"1
- AZ -cos + _ .g2(I-

nA A n

i1



+GCAB t B (aot n.-Z~ltfA) -vB (aol ,.-Z 8~~ nA)jJ

qo(i-l) "OM < 0< ýoi + OM

and

Tui(O) = Li(-) - (*o(i-1) - O) > O- (*oi + 0H)

i -- 1,2,3, --- h ,

where the property of symmetry is used to obtain the image waves from
the upper wall. Each term of the image waves in Eqs. (16) is valid only
in the poperly defined region, otherwise it is identically zero. If

[(Zh + 1)OH + aoh] <"

the regions of the last terms, i h in Eq. (16), should be modified as

(17) "o(h-1) OH<_ _ - -€o(h-l) - (Zh-l)0H, from the lower-wall,

and

-(,o(h-l)-0'H) >"-I -,o(h-l) -(Zh-l)OH] from the upper-wall.

Examples of Eqs. (16) and (17) for h=2 may be obtained from Fig. 4.

We have so far described the diffracted waves from A and B. both
directly to the far field by Eqs. (10) and indirectly reflected to the far
field by Eqs. (16) and (17). When these waves propagate outward, wedges
F and G are illuminated and diffracted waves are induced to contribute to
the far field. Using Fig. 4 as an example, wedge F is illuminated by B
and image 1 but not by image 2. In general, if there are h images formed
in the lower wall, wedge F would be illuminated by B and (h-I) images
in the directions 0 = OH + *0oo and 0 = OH + 'oi. with i=l, 2 -- - (h-1), If the
equality in Eq. (15) holds, then F would also be illuminated by the hth-
image in the direction 0 = OH + *oh but the intensity is equal to zero. To
evaluate coupling coefficients in the mentioned directions, Eqs. (10) can
first be used to obtain

12



K Kl)KA2-Cos(I 400 9I-O)

[KAZ-C05(os +JO

+ CAB[V`B (ao, !_ýooUH, n A) - vB (ao. .- q0ooLH n A)]

which can be seen to be identical to CFi shown below with i = 0. There-

fore, coupling coefficients to F cani be written from Eq. (16) in general

as

(18) CFi = Li(" J1 + oi)

= (-l)iIKI *(AŽ - COs,

+ CAB I vB (ao. ! iiisZ~)j nA) - vB(ao.' L o~Ziluna)}1

i = 0, 1, 2, ---- (h-i),

where i=0 is included for CFB = CFO. By symmetry, the coupling co-

efficients from the upper wall to wedge G are CGi = IM(6=-ýi-*oi)
which are identical to CFi in Eqs. (18). With these coupling coefficients,

the solutions of diffracted waves from F and G can be summarized by

using Eqs. (A-3);

13



h-I

(19) -= CFi[VB(pi, _-O.4oj+, 2) -VB(•, -- •H+*oj+O, Z)]

i=0

D'G _ •-)

Pi : •F - *oi = - oi+ 8) - *oi

and

Ft +oi = (w - 8H + 8) + *oi,

whiere i (h-1) is set as the last term because the case for t = h has
Crh = 0. Each of the diffracted waves D'F and D'G from F and G illumi-
nates the opposite edge, causing a series of interactions, as is the case
between A and B. In a manner similar to Eq. (9), the resultant coupling
coefficient between F and G can be obtained as follows:

C'G
(20) CFG = CGF - C-FG

l-CFGF

CFGD6 (D=, )= DSG( =)

- CFt [vB(pI#,!--H-Oi# 2) - vB(PL' !H+*i' 2)]

i= 0

and

CFGF = 'vB(b, 0, 2) - vB(b, w - 26e, Z),

where CFGF is the diffraction coefficient between F and G. Using CFG,
the diffracted waves from F and G resulting from the interaction, can
again be obtained by using Eq. (A-3) as

(2I1 DFG= CF ( I-B 2B(

DGF = DFO-61

14



(cont)

and

FG = 'F + - H -UH

where y , rare obtained from Fig. 4. The total diffractions from F and

G are theL the superposition of Eqs. (19) and (2.1) as

(22) D=DF + DFC

h-I

ý. Fi [vB(Pi, 7r-OH-Ioi -, 2) - VB(P; Ioil + )oi + 0 ,2)J

i=O

and

D DFG-O ,ý z

where the regions are specified to exclude the portions of waves reflected
by horn walls in the regions

-(-Gj) < 0< -- forF and (7r-Oj.j)> 3>1 for G.
22

The portions of the diffracted waves from F and G which are reflected

by the horn walls may be described in a manner identical to the image-
waves in Appendix B. By Eq. (B-6), the image-waves in the lower and
upper horn walls caused by F and G can be obtained from Eqs. (22) as

'5



(Z3) (-1)m DF(O = -ZMCH -

= (-All GFi{VB(pi, IT "•i (2m+1)O1H-O' 2)

Li=O

- VB(Pi, w +41oi.(2m+l)jj-Q, 2))

+ CFG fvB(b, 1.2.mýH-0, 2) - VB(b' "+2(m+l)OI"IZ)1J

2 2

1urn0)= I~m(-0), - [2.(m+l)&i] 10> - _[j mOH]

and

m = lZ,3-...(p-l)

where p it the number of images formed in the lower or the upper wall,
provided the walls FB and GA extend to intersect at Q. The value of p
is the largest integer satisfying the condition

IT

If the ratio v/ZOH is not an exact integer, the region defined for the last
image, i = p, should be modified as

(24) - (m+l)%H < 0< it - (2m+I)61P from the lower-wall,

and

•Z .(m+l)yH] > 0> - [w-(2m+l)0H], from the upper-wall,

in which most of the rays propagate into the guide as in Fig. 5. The
image-waves given in Eqs. (23), in general, contribute negligibly to the
total far-field pattern of typical horn antennas. But the contribution for

16
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(M- 3e)-\
V.F - H', -8 +

AA ,

/

m22 rnl

F2 =•

F3 :P3
FG b

Fig. 5. The lower-wall images due to diffracted waves from
wedges A and B.

small horns is not negligible. For very dccurate treatment, t'.; effects
of Eqs. (23) may be included, and consezjuentiy their illuminations to
wedges F and G need to be considered to c~mpensate for discontinuities

"in Eqs. (23).

From the im~age regions given in Appendix B or Fig. 5, it can be
seen that wedges F and G are illuminated by the lower and uppe" :wails

at
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respectively, for each image. By using Eqs. (23) the coupling coeffi-

cients can be obtained as

(25) CFm- !Lm (- - -IUm(O -- _ + m

= (~lm [~CFi jvB (Pi, 4o. 4J~(m+l)B, z
L =

-VB(Pi. I +ýiiio(m+1)NH2jG'2}

+ CFG{VB(b, -mOH, L) - VB(b, w -(m+Z)eH, 2)j

= Gm

m= 1, , 3 ----- (p-1).

The value of m is restricted to (p-i) as the highest because the las,
image wave i=p does not exist for most horn antennas. The apparent
reason is shown in Fig. 5 in which the diffracted rays giving rise to the
last image actually propagate into the waveguide. In fact, for the small
horn shown, a portion of the second to the last hnage does not exist

either. Because of the fact that the diffracted-field intensity is very
small for low angles of incidence, the contributions of ILnIum, and
CFnm for the highest values of m are relatively insignificant. There-
fore, a very satisfactory result can usually be obtained by considering
th(o contributions only for m = 1 to (p-1).

Using CFm in Eqs. (25), the diffracted waves from F and G
illuminated by the image-waves can be obtained as

(26) DFm(G) - i7F- B , - 3B 2

DGm(0) = DFm(-O)

Pm P(m-l) cos e ":- b cos mlH

P0 -b,

Is



(26)= " - (m+1)AH + m1 +
(cont)

and

1r F+ (2 " (r-+1)- T= - (++20
FM F -2- " +

m = 1,2,3--- (p-l),

where Fig.) 5 can be used as reference for the geometry.

The total diffracted waves from F and G are then the sums of
DF(U) and DGOb) in Eqs. (22) and DFm(,J) and DGC( 0 ) in Eqs. (26). Using
subscript T to denote the total, they are obtained as

(27) (DF('))T = DF + DFm

m=l

h-I

y C•-i['B(P- ) -vB(RPi,1-O + Doi + 0,2)]

i=O

+ CFG VB (b, +-2) -vB-(b -2t3H+)D21

Fm vB[Pm, +m 0H÷.+, ) _ , , 2)

- £<0 Of + UH,

'r+iH'

(Dc(O))T = (DF(-O))T, > O> _(+ 8H)

where CFi, CFG, and CFm are given in Eqs. (18), (20) and (25),
respectively.

9
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For typical horn antennas, the diffraction process mentionee'j

I

above is suff icient to describe the far-field radiation mechanisms.

To obtain the total radiation pattern of the horn antenna one may simply

superimpose the diffracted waves in Eqs. (10) and (Z7) and the corre-

spoz-~ding imnages in Eqs. (16) and (23). It is noted that the images of

D'Fm and DGm in Eqs. (26) are not included in Eqs. (23).

Before superimposing these waves to obtain the far-field pattern.

a phase reference needs to be established. If F is taken a;3 the phase-

refe rence point, then phase-shift factors from A. B, G. and the images

sapergimpoen b hy ifatdwvs nEs I)ad(2)adtec

(28) YFA Exps. (I16 cs (. PH Cs ofFAI

DFB n Exp. (2j6) P0 Fot i in. (3I.0

(zsVFA = Exp. [+jZ•b cos AYFB Exp" [+iZPocos ]: silis-O h

i .

'OFi -A [ + •) -H.z 0,1, -h

0 Fm +'A +"om = (÷ •(. + -(Z01,--)

•' i • -=o (T-r + MOH + o: m = 0, , --- (P1)

2,

20



where the distance3 pH, b, pip and pm ace all in terms of wavelengths.
The values of +oi are given in Eqs. (14).

Finally, the radiation pattern of the horn antenna can be obtained
by using Eqs. (10), (16), (23), (27), and (_28) as

(29) UH() '- DAYFA + DBYFB + IDF)T + (DG)TYFG

h
+ 77 [ILi YFi + IUi YFGYGil

i=l

+ 'ILm YFm +Iu rYFGYGI, 0Y<0<2ir

m=4

where each individual term is valid only in the properly defined region

and otherwise is set to zero. The phase factors YGi and YGm are those
of the image waves from the upper wall referred to G. When they are
multiplied by YFG, the phase reference of the upper wall images is
referred to F.

It has been shown[ 3] that the radiation pattern in the H-plane of

a horn antenna is not only due to contributions of H-plane radiation
mechanisms, but also to diffracted fields from E-edges. It is assumed
that the horn antenna shown in Fig. 6 has a geometrical-optics field
distribution in the aperture which is constant in the E-plane and cosinu-
soidal from the center to the edges in the H-plane. Taking the upper
horn wall for illustration, a ray initiated from an assumed source in
the waveguide strikes the E-edge with an incident angle P shown. The
incident ray-intensity is cosinusoidal from the center along the edge,

therefore, if the intensity is assumed to be unity when P = irj2, the
illumination intensity of the incident ray as a function of 9 can be written
as

(30) X(G) = cos [Etan(cot OH] , - <_

where 0 is in the H-plane. The diffracted rays from the edge form a
cone and have a solution involving sin • 171 as

2
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(31) D X(0) VB(PE.W- W E+aQ,) 2

sin

where the angle O is referred to the principal E-plane of the antennas.
The angle 3 in terms of 0 is

(3Z) pi .Ke

Because only two of the diffracted rays shown in Fig. 6 lie in the H-
plane, the vB factors of Eq. (31) are given by

(33) vB(PE sec 0, r - E, 2), in the forward directions
and

vB(PE ! sec el, 2ir - aE, 2). in the backward direction.

where PE is the horn length in the principal E-plane. Combining Eqs.
(30) to (33), the diffracted fields contribution to the H-plane in the for-
ward and backward directions are written as

cos[13 tan 0 cot ()H]
(34) DI = --sec 0, -(A E ) e< HcostO [VB(PE Esec 0H -aEZ)], _ :O< W+0H S

dcos[! tanOcot 0HI2, - - cos a! [•((pE sec Gi,2w--Ez)I, •-•H<_ <_+oH,

where the minus sign is introduced for DI to take into account the three-
dimensional polarization properties of the contributions from the E-
edges. Also taking into account the diffracted fields from th.; lower edge
of the horn, the total contribution to the principal H-plane can be written
as

(35) 1E(G) = Zu*(0) Di YFDi ( f 0 <- -H
[DZYFD, IT- OH<O<W+OH

where the factor a * (0) is the actual geometrical-optict field intensity

instead of the urit intensity assumed earlier in Eq. '30). The valu, oi
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u*(0) can be obtained, within the accuracy of the solution in Eq. (29),
in the direction of 0 0 as

(36) u*(o) 2DA(O)YFA(O) + T TLi(O)YFi(0i YSF

and

YSF = Exp. 2PSF COs (HI

where the factor 2 results from contributions from both walls. The
sum of the terms in the bracket has the phase-reference at edge F.
The factor ySF is used to refer u*(O) -ýack to the assumed sourse S
(the intersection of the two Walls perp -ndicular to E-fields) shown in
Fig. 6, so that Eq. (35) is appropriate. The two phase factors in Eq.
(35) are used to refer the diffracted rays to point F. They can be ob--
tained by assuming, for convenience of computation, that FS % FQ for
typical horns. Under this assumption and making use of Figs. 4 and
6, the phase-factors can be obtained as

(37) yFDE) lrb 6- H_ < o

YFD Exp. -(PH+pg)cos GH tanej sin tirSH<<_ _+H

where
ao

Pg= 2 sin•

If the contributions from the E-edges given in Eq. (35) are con-
sidered in the H-plane radiation pattern given in Eq. (29), the total
radiation pattern in the principal H.-plane may now be written as

(38) UT(0) = UH0() + UE( .

To compute the radiation pattern , only the upper half-plane (0 < 9< w)
needs to be considered. Numerical computations will be discussed in the
next section and compared with experimental results.
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IV. COMPUTED RESULTS COMPARED
WITH MEASURED PATTERNS

The horn antenna used in the experimental measurements is shown
in Fig. 7a, in which the waveguide feeding the horn is finite in length and
to which is attached an attenuator and a detector. It can be observed
from the figure that any possible reflection and diffraction taking place
on the surface of the guide and associated structure are not considered
in the solutions given in Eqs. (29) and (35) or Eq. (3<). Since the guide
is finite in length and the diffracted waves from F and G illuminate A

arid B with zero intensity, the solutions in Eq. (38) can be applied to
the approximate model shown in Fig. 7b. in other words, as far as H-
plane-diffracted fields are concerned, the total pattern contributed by

Detector And Atteniiator mounts

A AG -pr

TE 0< EFa1

For -Field

.. ~~~ "ý8 -8.-AI'

G

(b)

Fig. 7. Horn antenna (a) used in measuremeutt and the
Model (b) used in computation.
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the diffracted ray from edge F and reflected by the guide surface shown
in Fig. 7a is replaced by that directlj diffracted from G. Using this
approximate model, the total far-field pattern in the region 0 < 8< w
can be computed by Eq. (?8) as

UT() = uH(O) + UE(O), 0 < 0< TT,

where uH(O) is modified from Eq. (29) as

UH( =- DAYFA + DBYFB + (DF)T + (DG)TYFG

h

+ ! [IiYFi + IUiYFCYGi]

i=l

+ •I[ILmYGmYFG]

m=l

(39) DA(M) : 0 <_ 0< 8H
-- H ~ h. qs. (10),

DB(8 ) : 0< 8< <OHJ+oo

DF(O): 0<<e< ir

< o< Eqs. (ZZ))
DG(O): -

I -{) :O< i 8< 0<•o ]?

) -(4'3 Eqs .(16)lui(') : 0 <_ "< _ "H- oi J)
1fm(0) : _(m+l)0Hi< 0 <1 - m0H ,Eqs. (23),

and UE(O) is modified from Eq. (35) as

(40) uE(8 ) = U*(o)[Z{: YFD, + DzyFDp ];
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(40) D (O) 0 <_ Es (34)

(cont) Eqs. (34)
D zý0 ) n- 10 H -< 0 < i I

The phase-factors in Eqs. (39) and (40) can be obtained from Eqs. (28)
and (37), respectively.

Computations of uH(O) and uE_(G) are simple algebraic superpositions
if the function vB can be computed. The diffraction terms vB of DA, DB,
TLi, and 1Ui are computed by making use of Eq. (A-H1). The vB of the
rest of the terms in Eqs. (39) and (40) are computed by Eq. (A-10).
The pattern computed for the parameters shown in Fig. 8 is plotted for

20 log iUT(8)l
IuT(0)l

For convenience of comparison, the computed pattern is shown
displaced (+5) db above the measured pattern in Fig. 8. Excellent
agreement is observed in the region 0 < 0< 90'. In the region 90° < 8
< 1800 - Om . the radiation intensity is below (-50)db. Therefore, the
experimental pattern cannot be accurately measured. In the backlobe
region, 1800 - OH< 6< 1800, two computed patterns are shown. The
dotted pattern is obtained by neglecting the contribution UE(0) from E-
edges. The calculated pattern including UE(E) gives good agreement
with the measured pattern.

V. CONCLUSIONS

Diffraction theory in conjunction with the method of images has
been demonstrated to be a successful technique to compute the principal
H-plane pattern of a horn antenna. The interactions between wedges A
and B at the horn throat are successfully described by using a new form
of diffraction function vB. This new form of vB is the series formula-
tion in terms of cylindrical wave functions given in Eq. (A-9). The
convergence of this series allows practical and accurate computation
of vB for typical horn antennas.

The contribution UE( 8 ) from the E-edges has been shown to be the
primary radiation in the backlobe region. In the main-lobe region, the
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contribution of UE(j) is unnc~iciably srnm-l as compared to that of UH(u).

The experimental results confirming the above conclusions have been

given in Ref. 3.

A corrugated horn[oI of dimensions -.imilar to those given in Fig.
8 has been discovered to have an E-plane pattern almost identical to

that of H-plane in the figure. Therefore, by principles of duality, the
discovery suggests that the E-plane pattern of a corrugated horn can be

solved by treating the corrugated surfaces as magnetic conductors.

It may finally be concluded that the radiation mechanisms of horn

antennas described by diffraction theory are new points of views on

electromagnetic radiation and propagation. Proper use of the theory
ensures solutions for most two-dimensional problems involving per-
fectly conducting wedges.
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APPENDIX A
REVIEW OF DIFFRACTION THEORY

The two-dimensional problem of the electromagnetic field in
the neighborhood of a cc-ductihg wedge illuminated by a uniform plane
wave was first solved by Somrnerfeld[9]. The solution for a conducting
half-plane (zero wedg angle) was formulated in terms of the Fresnel
Integral. Subsequently, Pauli[lO] formulated the bolution for wedges
of arbitrary angles in an asymptotic series in which the dominant term
is the Fresnel integral, The higher-order terms in Paul;'s solution
become identically zero for zero wedge angle. Therefore, Pauli's
solution is lised here for the general case.

Figure A-I shows the geometry of the wedge used by Paul-I io
formulate the solution of field intensity at P(r, ý) caused by pline -wave
illumination. By reciprocit-r, if the same wedge of a perfectly conduct-
ing surface is illuminated by a uniform cylindrical wave from S shown
in Fig. A-lb, the far-field intensity can be written from Pauli's solution
ao

(A-l) v v(•p, n) ± v(p, 4,-, n),

V+v -

wf = •p # and

n =2 -E

where the ternms v t represent the incident and the reflected fields,
respectively. The sum (v+ + v-) applies when S is a magnetic line: source.
and the difference (v+ - v-) applies if S it an electric line source. The
incident and the reflected fields are composed of geometrical optics
terms and diffracted terms, as,

v = (v)* + v±
B'
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.P (FAR-FIELD POINT)

4fi.A.Ge etyo a wedge.

31

0

Ca Illuminat:ed by auniform cyldcale wave
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The geometrical optics terms are given by

(A-2) (v*1-" = v*(p., I . n)

fExp[jkpcos(Cl + 2wrnN)], -w< *+ 2wnN< v.

otherwise

N = 0, -i, *2---

where the periodicity of the functions is seen to be Znir. The diffracted

terms are given by

(A-3) VB± =VB(P, 4, n)

-Exp(j ) (i 2fcosq)I Exp (jkp cos

nO V O'•
Cos cs-

+ (Higher-order terms

negligible for large kp)

+3and

a 1 + cosn+.

As (akp) approaches infinity, i, e., as the line source S recedes to the
infinity, the solutions in Eq. (32) can be written

•u= Ex~p [ -j ( Tr + kp isin -

(A-4) v.B(P f 3U) =c, j
2rkp(cou-Co

n n

For N=0 in Eq. (A-2) the geometrical optics terms have discontin-

uities at the shadow boundary (4+ = w), and the reflection boundary (4" = ).

At these boundaries, the diffracted terms are given as
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Exp. {-jkp) + - - - o = IiM_(Tr - C)

(A-5) VB(,Q 0 =,n) = 1

+ ] Exp. (-Jkp) + - - - o = lir (r +t)
[ • "0

where the higher-order terms are negligible for large (kp) are not
presented. The solutions are essential in ensuring cortinuity at the
boundaries. Since we intentionally make the geometrical optics terms
in Eq. (A-2) defined at the boundaries, p+ = +-n, the first equation of
Eq* (A-5) should be used to obtain the field intensities at the boundaries
The total far-field of the wedge illuminated by a uniform cylindrical
wave shown in Fig. A-lb can now be obtained by using Eqs. (A-2), (A-.3),
and (A-5) as

(A-6) u(p,..n) = [(v*)+ + VB+] ± [(v*)" + VB",

where the reflection terms disappear if the wedge is illuminated by the
source with o = 0. If the source is an electric line element, the value
of u(p, dý, n) is identically zero for %P = 0.

The solutions in Eq. (A-6) are valid only in evaluating the far-field
intensity which is the main concern of present problern. The diffracted
near-field intensities of a conducting half-plane, i.e., n = 2, have been
solved by Nomiura[Ill and used by Ohba for dipole source illumination.
Since this solution is in a general form, it can easily serve to illustrate
principles of reciprocity. To generalize the solution further, the dif-
fracted near-fields of a wedge illuminated by a line source have been
written by Dybdal[12 1 in a form as follows:

{A-7) (r, p,0+ n) = Exp [-jk(r+p-b)]
(A~ ~ VB(b.Q ,n)]

rp
r+p

where the vB terms are given in Eq. (A-3. If the field point is in the
far-zone, v(r, p, o-, n) is reduced to
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+ +A± _ ý E p [-jkr] ._^• .,
" Fs .tY # 441 -- --js.r"v T -'

which, with the common factor r-Z E;xp[-jkr] removed, is identical to
Eq. (A-3). If the source point recedes to the far-zone, the solutions in
Eq. (A-7) are reduced to

v(rp, , n) Exp[-jkp] [vB(r,# 4+ n)]

which, w{th the common factor p-I Exp[ -jkp removed, are identical
to the near-field solutions of a wedge illuminated by a uniform plane
wave.

If a wedge has its value of n quite different from 2 and is illuminated
by a line source located closer th n several wavelengths from the wedge,
the higher-order terms of vB(p, q-. n) in Eq. (A-3) should be included to
give accurate results. Instead of evaluating higher-order terms, a more
convenient form of the solution for diffracted fields may be obtained from
the series of cylindrical wave functions and can be written as

(A-8) vB(P n) v(P, *,n) - *(p. (P n),

± n) = nJ(kp) + 2 (j) n jr(kp)cos f_(±l

re=lm Zo. n

and

+ Exp[jkp 9(0cosl+'+ZnNw)],

SP,w ,n) I= T< '± + nNw < i, N =0, +1, ±Z,.

, 0, otherwise .

The quantities v(p, d+, n) and v(p, •-, n) are the incident and reflected

terms of the total radiation field[ 13]. The geometrical- optics terms
v*(p, 4+, n) and v*(p,4.4, n) are valid only in the defined regions and are

set identically zero otherwise. Writing vB explicitly as a function of
p. 41, and n, we have
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L 7
Exp[jkp cos(idf + ZnNfr)I, -r < -,f + ZnNn < -r,

N:O. +1, Z.
O0 otherwise.

It is more convenient to use the Bessel function form to compute vB
when p is small, because in this case the Bessel functions converge
rapidly. The angles ¢5 in vB may be replaced by :i, r to indicate more

clearly that they are the field angles for incident and reflected terms,
respectively. The diffraction terms vB(p,-?, n) are calculated in two
ways, depending on the values of p and n. For a wedge of zero wedge

angle (n = 2) or foi p > 1. 5X, the Fresnel integral form of vB in Eq.
(A-3) is used without the higher-order terms and is denoted by

Scos Expkp cos4) n)

(A- 10) v (p• n) -2=n . o.
I n Cos T~ C-5'

D Lnv4Z.. n n

e dT

a =1+ coo gp

For caset in which p < 1.5k and n 12. the series form ofovB in Eq. (+-9)
involving Bessel functions i, emrnpl1yed and is denoted by

15 
m

(A- vD A0.n n" okp) + 2 U ) n j (kp) coo n (y +i

L M=I.2. . -n

Exp[jkp cos(O• + ZnNit)] -?r < di* + ZnN~r <w

0. otherwise, NO 1 2---

where the series is summed for m/n< 15 because the Bessel functions of
order higher than 15 are vanishingly smrall[141 for p < 1.5k.
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APPENDIX B
FAR-FIELD WAVES FROM THE IMAGES

OF LINE SOURCES

Consider line sources parallel to perfectly conducting plane
walls. The problem in this Appendix is to obtain the far-field intensity
of the image waves from the walls. The problem is a two-dimensional
one and the line sources can be either magnetic or electric line sources.

First, a directional line source is shown at point S in Fig. B-1.
If a semi-infinite conducting wall is placed with an angle 8o with respect
to the horizontal reference axis, the image of th( line source is formed
at point 1. The line source radiates a directional cylindrical wave to the

1- 0 S-----

HALF-PLANE WALL

Fig. B-1. Geometry of a line source and its image.

far-field and it is designated as v(8). In the presence of the wall. v(9)
is reflected by the wall in the region -(wr + 8o) . 0< - ?r/2. The reflected
wave is called the! image wave from point I and can be described by

ir

(B-1) Ii (0) = v-(8) = v(- 8
0o-G) 2 - Z0O < 8a< -(r - 80)

where the superscript minus sign implies the reflection of v(8). The
total far-field pattern can then be obtained by superposition of the two
waves as
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(B-Z) u(O) = v(O) + v(-Z0c, - 0) Y31

and

YsI Expl-jkp sin (0 + ( 0).)

where ys, is the local phase-factor of the image referred to point S
and p is the distance between the image and the source as shown in
Fig. B-I. This result is obtained by removing the common factor
R-iExp I-jkR], with R referred to S. The plus sign applies for a

magnetic line source, while the minus sign should be used for an
electric line source.

Next, a corner reflector of 20o is shown in Fig. B-Za. Let there
be only one line source v(O) at A. In the region -(w - 0o) < 0< -ir/2, the
rays from A are reflected by the lower wall. Only rays in the ray -I
zone (from image -1) are directly reflected to the far-field. The rays

in ray -2 zone are reflected twice while those in ray -3 zone are re-
flected three times inside the reflector. Consequently, three image
waves are formed in three distinct regions. The first image wave can

be written similar to Eq. (B-l) from Fig. B-Za as

(B-3) v (0) = v(-2 8
00- )- Zo-8 0 < 00

which is obtained by replacing the 0 of v(O) by (-200 - 0). The second
image is formed in the upper wall. This image wave can be obtained
by replacing the 0 of vi"(O) by (+Z00 - 0) as

(v-(O) v(-4% + 6). - ( 30),3E)>- (E- ZOO).>

Agatn replacing the 0 of the above expression by (-260 - 01, the third
image wave car. be obtained as

-V -= v(- 6_o 6 . - 4 0< <_ - •0.

This process can be used for any number of images. The number of
images is equal to the number of ray zones determined by the highest
integer h such that h < wi1Zo. Construction of the images in Fig. B-Za can
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(b) Images of lower wall due to two symmetrical line sources

Fig. B-2. Geometry of a corner reflector -1 > Z8 > 6 >
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be extended to conclude that all the odd-numbered images are formed
in the lower wall, while the even-numbered images are in the upper
wall. In general, the image waves can be written

[v(-2i0o - <), < _i_- i0o for i odd
(B-5) vi-(0) : 2

v(-2i 0o + 0), [-(i+l)o] > 0> - [ _i0.] for i even,

i= 2,2,3- -- (h-l)

If the ratio of n to 200 is not exactly an integer, the valid region of the
last image should be modified as

fv(-Zheoo), .-- (h+1)e 0 < O< 7-(Zh+1)0o h odd(B-6) Vh _(0) = ' 2

v(-2hO8+O), -[ •-".-(h+1)0 0 1 > 0> -[, -(2h+l)0Jo h even.

The value of 2 00 in Fig. B-2 is larger than wT/4 but smaller than Tr/2.
Therefore h is equa, to 3 and the last image is defined by Eq. (B-6)
for h odd.

Figure B-2b shows two symmetrical line sources at A and B from
which far-field waves v(0) and v(-O), respectively, are radiated. The
images of the source at A are identical to those in Fig. B-2. Because
of the symmetrical properties of the assumed line sources and the geo-
metry of the reflector, the images resulting from the source at B are
symmetrical to those of A. Consequently, equal numbers of symmetri-
cal images are formed in both walls of the reflector. Making use of this
symmetry, the image waves excited by v(-6) from B can be obtained
similar to Eq. (B-5) as

V(--2i%0 +6), _[a-(l+l)90 ] > Q>-[!..je0I I odd
(B -7 ) v "(- e) :

0 -(i+loo < 0< < i eve,,,

i 1,2, 3--- (h-")

In case the ratio n to 2Uo is not an integer, the last image wave has
its defined region as in Eq, (B-6) by interchanging h odd and h even,
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from the lower wall are combinations of vi-(0I with i odd and vf-(-O)
with i even. The other set of ccmbiziations gives the image waves
from the upper wall. To summarize, the image waves from both walls
of the reflector are designated by (IT)i and (TU)i as follows:

(B-8) (IL)i = v-(0 ) = v(-2io-O) ,r !i(i+I)O0 C 0< -•rj loerwal
2o lower wall.2

/IU)i=v'(_o)=v(_Zio+0) , -[• + -itl)Qo] > _>-[!-i~o]. upper wall;

i= 1,2,3,--- h.

For the ratio of Tr to 2 0O not an integer, modifications for i = h are

(B-9) (IL)h = v(-2h%-8), -Ihil)EO < 0< Tr

and

(IU)h = v(-ZhO0 +O), -[20(h+l)%j > O> -[ir-(2h+l)00 ]
2

In Fig. B-2b, three images in the lower wall are shown. Their far-field
intensities can be obtained by setting h = 3 in Eqs. (B-8) and (B-9).

Because of symmetry, only the upper-half region 0 < 0< Tr needs
to be considered for the radiation pattern of the reflector antenna. In
this region, the contributions are from the sources at A and B and the
images in the lower wall. Contributions from the last image in the
upper wall are possible, if the ratio of n to 200 is not an integer. Super-
position of all these contri'.utions gives the total far-field 'A(O) as

h

(B-10) u(6) = v(8) + [v(-B)IYAB + L (*I)i [v(-ziG-O)]yAl
1=1

)h
+ (_+) [v{-ahe+a)]YAB YBh
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where (+I). preceding the image terms are used for magnetic line sources

and (- )i are used for electric line sources. The phase factors are
introduced by taking A as phase-reference:

(B-i) YAB Exp [-jkPo sin 01,

Y.Ai Exp [-jkpi sin (io+]),

YBh EXp [-jkPh sin(h0o-0)]

Po AB, and

Pi P= I Cos ci. + Po COS (i0o).

The above expressions can be obtained by considering the geometry of
Fig. B-2. It is noted that each term in Eqs. (B-10) and (B-il) is set
zero outside its defined region.
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